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SEDIMENT TRANSPORT BY TURBULENT FLOW ABOVE A BOTTOM SUBJECT TO EROSION 

A. G. Petrov and P. G. Petrov UDC 532. 543 

The theory of the motion of suspended particles in a turbulent flow at low concentra- 
tion is presented in [I, 2]. In [3] it is proposed that Coulombic dry friction between the 
solid particles moving in the liquid be taken into account. In [4-7] the motion of a mixture 
of a liquid and solid particles is investigated with the help of a rheological relation in 
the form of a combination of dry friction for the solid phase and viscous friction for the 
liquid phase. In [4] one-dimensional turbulent flow above an even bottom is considered. In 
[5-7] the motion is studied in a general formulation with an arbitrary bottom relief and an 
expression is derived for the sediment flow rate. In [4-7] the particle concentration in 
the layer of sediment at the bottom is assumed to be constant. 

In the present paper we propose, on the basis of the results enumerated above, a model 
of the medium which gives a continuous description of the motion of the mixture over the en- 
tire thickness of the flow, starting from the eroding bottom surface with the limiting par- 
ticle concentration. Far from the bottom surface, where the concentration is low, theequa- 
tions convert into the equations of motion derived in [I, 2] for suspended particles in a 
turbulent flow. The main result is an analytic expression for the sediment flow rate in a 
turbulent flow for the general three-dimensional problem. The theory does not require the 
introduction of unknown empirical parameters. 

i. Assumptions. We consider the turbulent flow of a heavy incompressible liquid with 
solid particles in the region $(x, y) < z < q, where x, y, and z is a Cartesian coordinate 
system whose z-axis is oriented vertically, the equation of the free surface is z = q, and 
the equation of the bottom surface is z = g(x, y). A stationary granulated uniform medium 
occupies the region z < g(x, y). Mass transfer occurs at the interface z = g(x, y). The 
density of solid particles pp is higher than the density of the liquid Pw" 

It is assumed that the main mass of the particles moves in a bottom layer of thickness 
of the order a, much less than the depth h = q - g. The characteristic horizontal since L 
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of the flow is significantly greater than the depth. Thus the following inequalities are 
satisfied: 

a <<h<< L. ( 1 . 1 )  

The f o l l o w i n g  c o n s e q u e n c e s  can  be d e r i v e d  f rom t h e  main a s s u m p t i o n  ( 1 . 1 ) .  

1. The t a n g e n t i a l  s t r e s s e s  on v e r t i c a l  a r e a s  and t h e  a c c e l e r a t i o n  o f  t h e  l i q u i d  a l o n g  
t h e  v e r t i c a l  d i r e c t i o n  a r e  n e g l i g i b l y  s m a l l .  The p r e s s u r e  d i s t r i b u t i o n  i s  h y d r o s t a t i c .  I f  
t h e  o r t h o g o n a l  c o o r d i n a t e s  X, Y, Z (whe re  Z i s  t h e  d i s t a n c e  a l o n g  t h e  n o r m a l  upwards  f rom 
t h e  b o t t o m  s u r f a c e ) i a r e  i n t r o d u c e d ,  t h e n  t h e  p r e s s u r e  i n  t h e  b o t t o m  l a y e r  a t  t h e  l e v e l  Z can  
be w r i t t e n  in  t h e  fo rm 

P = Pa + ~g(N - -  ~ - -  Z) + g ( ~ -  ~ ) ( a~  - -  a(Z)); (1 2) 

Z 

a ( Z ) =  J c ( Z ) d Z ,  a~ (1.3) 
0 

where Pa is the atmospheric pressure on the surface of the liquid; the second term is the 
weight of a column of the pure liquid; a(Z) is the effective thickness of the layer of par- 
ticles; and, c is the volume concentration of particles in the liquid. 

2. The change in the thickness a of the layer in any direction is much smaller than 
the change in the elevations of the bottom: 

Ival << [V~], V = (a/OX, 0/0)9. ( 1 . 4 )  

For  t h i s  r e a s o n ,  t h e  p r e s s u r e  g r a d i e n t  in  t h e  m i x t u r e  i s  e q u a l  t o  t h e  p r e s s u r e  g r a d i e n t  i n  
t h e  p u r e  l i q u i d .  In  wha t  f o l l o w s  we c o n f i n e  ou r  a t t e n t i o n  t o  f l o w s  whose F roude  number  i s  
much l e s s  t h a n  one ,  where  [VN[<< IV~], and f o r  t h i s  r e a s o n  

Vp = --pwgV~.  ( 1 . 5 )  

3. The a n g l e  u b e t w e e n  t h e  v e r t i c a l  d i r e c t i o n  and t h e  n o r m a l  t o  t h e  b o t t o m  s u r f a c e  i s  
s m a l l .  I n  what  f o l l o w s  we t a k e  i n t o  a c c o u n t  f i r s t - o r d e r  i n f i n i t e s i m a l s  in  ~,  in  p a r t i c u l a r ,  
cos~ z i. 

4. The diffusion flux through a vertical area is negligibly small. 

2. Diffusion Equation. Let u X and uy be the components of the particle velocity paral 7 
lel to the bottom surface and u Z = -w the settling velocity of the particles. The particle 
flux vector jl consists of convective and diffusive fluxes, i.e., 

Jx = CUx, ]y = cuy ,  Jz : - - c w  - -  ~Oc/OZ. ( 2 . 1 )  

Here e s is the turbulent diffusion coefficient, which in the bottom layer is of the order of 
Ss ~ v0a (v0 is the characteristic velocity at the top boundary of the layer). 

We write the diffusion equation 

Oc/Ot + div j : 0 ( 2 . 2 )  

and estimate its terms: 

0c OCUx OCUy cv o 0 0c  cv o 

d-7 § --d-f- + - s  .-~ --L-, -s e~ ~N -$-. 

It follows from estimates that for a/L << 1 the diffusion equation (2.2) can be written in 

the form 

0( ~ -  cw-I-  ~ - ~  = 0 .  

Away from the bottom layer the concentration c approaches zero. For this reason, after 

integration, we have 

cw ~ esOc/OZ ---- O. (2 .3)"  

3. Equations of Motion. We project the equation of motion of the bottom layer of the 
mixture on directions parallel to the bottom: 

pdv/dt : - -VP ~ O~/OZ --  Pgv ~, 
p = p p ~ +  ~ w ( l -  ~) = pw( l + ~ ( s -  l)), s = ~pi~, ( 3 . 1 )  

where p is the density of the mixture and v is the velocity of the mixture. 
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The tangential stress in the mixture on sections parallel to the bottom consists of the 

stresses ~w of the turbulent motion and the friction between the particles ~f: 

( 3 . 2 )  

We introduce the characteristic tangential stress at the bottom: To ~ lowry/2 , .  

The c o e f f i c i e n t  X i s  e x p r e s s e d  i n  t e rms  o f  C h ~ z y ' s  number c C as  X = 2 g / c 6 .  For  sand  
c h a n n e l s  c C r a n g e s  f rom 30 t o  50 m ~ 1 7 6  Hence we o b t a i n  t h e  r e q u i r e d  e s t i m a t e  T o ~ 0 .01  x 
PwV~/2. The v a l u e s  o f  ~w and ~f w i t h i n  t h e  b o t t o m  l a y e r  r a n g e  from 0 t o  <0- From t h e  e s t i -  
mates  

w IP I T, o z  N 

it follows that acceleration can he neglected for aL ~ 0.01. 
(1.5), Eq. (3.1) can be put into the form 

oT/oz = C(pp - -  ~ ) g v ~ .  

4. Rheology. We assume that ~f and T w are directed along the vector ~v/~Z. 

Ov / av 

Then, with the help of Eq. 

(3.3) 

Then 

(4.1) 

The tangential stress T w is determined by the turbulent motion of the medium and is found 
from Prandtl's law [8] 

~ = (• [Ov/OZ I)~pw E(c).  ( 4 . 2 )  

The function E(c) determines the magnitude of the contributions to the turbulent friction 
of the liquid and the solid phases. In the limiting case, when the solid phase phase makes 
no contribution E(c) = 1 - c, and when the contributions of the solid and liquid p]hases are 
proportional to the mass concentrations, E(c) = 1 + (s - l)c, as assumed in [4]. In [7] the 
intermediate case (E = i) is assumed. 

The tangential stress Tf is determined from Coulomb's law of dry friction 

Tf = Ps tg ~, Ps = g(Pp -- Pw)(a~  -- a), (4.3) 

where ~ is the angle of internal friction (for sand tan~ = 0.5); Ps is the additional pres- 
sure in the mixture. 

Thus Eq. (4.3) can be represented in the form 

T f  = A ( a =  - -  a), A = ( p p - - p w ) g t g  ~. ( 4 . 4 )  

For the one-dimensional case the proposed rheology agrees with that presented in [4]. 

5. Boundary Conditions. The velocity and tangential stress are continuous at the 
interface Z = 0. Hence we obtain 

Z = 0 :  v = 0 ,  ~w=0- (5 . I )  
At t h e  t op  b o u n d a r y  o f  t h e  p a r t i c l e  l a y e r  we assume t h a t  t h e  t a n g e n t i a l  s t r e s s  T = T, i s  

given and the concentration c = 0. These conditions can be written as 

Z - ~ : c - ~ 0 , ~ - ~ T .  (5.2) 

The l i m i t i n g  v a l u e s  in  t h e  c o n d i t i o n s  ( 5 . 2 )  a r e  r e a c h e d  f o r  Z ~ a0 ,  and f o r  t h i s  r e a s o n  T 
e q u a l s ,  t o  w i t h i n  i n f i n i t e s i m a l s  o f  o r d e r  a 0 / h ,  t h e  t a n g e n t i a l  s t r e s s  a t  t h e  bo t t om in  t h e  
a b s e n c e  o f  s o l i d  p a r t i c l e s  in  t h e  f l o w  and T can be found  from t h e  r e l a t i o n s  which  a r e  w e l l -  
known in  h y d r o d y n a m i c s .  

6. F o r m u l a t i o n  o f  t h e  Prob lem f o r  O n e - D i m e n s i o n a l  Mot ion .  We now w r i t e  t h e  d i f f u s i o n  
e q u a t i o n  ( 2 . 3 ) ,  t h e  e q u a t i o n  o f  m o t i o n  ( 3 . 3 ) ,  and t h e  r h e o l o g i c a l  r e l a t i o n  ( 4 . 1 ) :  

o~/oz = c A r ,  r = ( o ~ / o x ) / t g  ~; (6 .  i )  

cw + esOc/OZ = O; ( 6 . 2 )  

= A ( a ~  - -  a) + T w ,  T w =  fiwm)v/OZ; ( 6 . 3 )  
e s = ke,  e = (• ~ .~  0,4. ( 6 . 4 )  

The diffusion coefficient s s is proportional to the coefficient of turbulent viscosity e, 
and k is of the order of unity [9]. 
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Thus in order to calculate c(Z) and v(Z) the system of equations (6.1)-(.4) must be 
solved with the boundary conditions (5.1) and (5.2). 

6a. Determination of the Tangential Stresses and Thickness of the Moving Particle Layer. 
We integrate Eq. (6.1) along Z and obtain, with the help of Eq. (6.3), 

= A ( a d  - -  a) + Tw= T + A r ( a  - -  a=).  ( 6 . 5 )  

I t  f o l l o w s  f rom Eq. ( 5 . 5 )  t h a t  T w i s  a l i n e a r  f u n c t i o n  o f  t h e  v a r i a b l e  a ,  and in  a d d i -  
t i o n  �9 w(0), != 0, ~w(a~) = T. Hence 

On the basis of Prandtl' 

where u, is the dynamic viscosity. 
a = 0 and %w = 0, we find 

�9 ~ =  T(a /a~) .  ( 6 . 6 )  

s law ( 6 . 3 )  and ( 6 . 4 ) ,  we o b t a i n  f rom Eq. ( 6 . 6 )  

U , ~ a ~ E ]  , u , = \ ~ W ,  (6.7) 

e = • ( 6 . 8 )  
�9 \ o o  ! 

From Eq. ( 6 . 5 )  and t h e  c o n d i t i o n s  t h a t  a t  t h e  bo t t om 

T u~ 9p 
a ~ = ~ 4 ( t + r )  -- ( s - - l ) g t g ~ ( t + r ) - '  s=--pw, ( 6 . 9 )  

6b. D i s t r i b u t i o n  o f  t h e  P a r t i c l e  C o n c e n t r a t i o n .  We now s u b s t i t u t e  i n t o  t h e  d i f f u s i o n  
e q u a t i o n  ( 5 . 2 )  t h e  e x p r e s s i o n  ( 5 . 8 )  f o r  t h e  t u r b u l e n t  d i f f u s i o n  E s .  Then we f i n d  f o r  t h e  
c o n c e n t r a t i o n  c (Z)  and t h e  t h i c k n e s s  a(Z)  o f  t h e  l a y e r  

( a ~l/~_dc d~ o~c+~] z~-~-=O, ~-=c; (6.1o) 

(z = w /u . •  ( 6 . 1 1  ) 

There  e x i s t s  a l i m i t i n g  c o n c e n t r a t i o n  Csa t ( s a t u r a t i o n  c o n c e n t r a t i o n )  f o r  t h e  moving 
m i x t u r e .  For  t h i s  r e a s o n ,  Eq. ( 5 . 1 0 )  i s  v a l i d  in  "the r e g i o n  ~ < Z ,  where  c < Csa t -  

I n  t h e  l a y e r  0 < Z < 5 t h e  c o n c e n t r a t i o n  i s  c o n s t a n t  c = C s a t ,  and t h e  v a l u e  o f  a i n -  
c r e a s e s  l i n e a r l y  w i t h  Z. Thus in  t h e  r e g i o n  0 ~ Z ~ 8 we have  

c = Csa t a  = Csa tZ .  ( 6 . 1 2 )  

In  t h e  r e g i o n  6 ~ Z t h e  c o n c e n t r a t i o n  d i s t r i b u t i o n  must  be d e t e r m i n e d  f rom t h e  sy s t em of  
e q u a t i o n s  ( 5 . 1 0 )  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

Z = 6: a = a 0 = Csa t ~, c = C gat  ' ( 6 . 1 3 )  
Z ~- oo: a ~ a ~ c  ~ 0 .  

For  low c o n c e n t r a t i o n  (c  << 1) we can s e t  E = 1. Then t h e  f i r s t  e q u a t i o n  in  Eqs.  ( 6 . 1 0 ) ,  
t a k i n g  i n t o  a c c o u n t  Eq. ( 6 . 1 3 ) ,  has  t h e  f o l l o w i n g  i n t e g r a l :  

2~z(ac~a)X/2 + Zda/dZ -- a = (2cr -- i)a~. ( 6 . 1 4 )  

From Eq. (6.14) and the conditions (6.13) with Z = 6 we find 

C sat~/a~ = affa~ = (i -- i/2=) ~. (6.15) 

With the help of the substitution 

a/aoo = (i -- ~)2 (6.16) 

Eq. (6.14) can be put into the form 

- -2( i  - -  ~p)d~p/[~(2~ - -  2 + $) l = dZ/Z,  $(8) = 1/2~, ( 6 . 1 7 )  

which  can be i n t e g r a t e d ,  g i v i n g  t h e  s o l u t i o n  o f  t h e  b o u n d a r y - v a l u e  p rob lem ( 6 . 1 0 )  and ( 6 . 1 3 ) :  

a~ (2a -- 2 ~ ~)(2cz-*)/(a-1) 
Z =  

Csa t (2~ -- l)~a/(~-z)$ if(z-'a)''' ( 6.18 ) 

2a~ (~p -- l)d~ ~ - =~sat ( (2~-: t)2* .~,(,~-0 
c ~ 2(z-- 2 -{- r / 

The asymptotic concentration distribution for Z >> d is found from the solution (6.18), sub- 
stituting Eq. (6.15): 
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c = C sa~ 1 (2~--  t) 3 ) 

It can be shown that for sufficiently large ~ the solution can be represented, with the rela- 
tive error I/(ia - I), by the approximate formula 

c = C s a t  (6/Z) ~. ( 6 . 2 0 )  

The  r e s u l t s  ( 6 . 1 8 ) - ( 6 . 2 0 )  o b t a i n e d  a b o v e  a r e  v a l i d  f o r  a > 1.  F o r  a = 1 t h e  s o l u t i o n  h a s  
t h e  f o r m  

Z/6 = 4~2e2/r c = C sa t le4-~ /* ,6  = a~/4Csa t .  (6.21) 

In this case, for Z ~ 6 we have the asymptotic expansion 

Z 2 ~ 4Csat ~ 
c = C:sa t q~ ~ ~ ~ - Z "  ( 6 . 2 2 )  

The  b o u n d a r y  v a l u e  p r o b l e m  ( 6 . 1 0 )  a n d  ( 6 . 1 3 ) d o e s  n o t  h a v e  a s o l u t i o n  f o r  ~ < 1. 

6c. Sediment Flow Rate. We now find the sediment flow rate under the assumption that 
the particles move with the velocity of the mixture. Integrating by parts and using the 
formula (6.7) we obtain 

G =  ppcvdZ= p p v ~ - f ( a - - a ~ ) d Z = p p  a ~ - - a ) ~ - ~ d Z  = n \7-~7 " 
0 0 0 

On t h e  b a s i s  o f  E q s .  ( 6 . 7 )  a n d  ( 6 . 1 6 )  we w r i t e  

G p p a ~ . [ ,  I = y ~ (2 - -  r  ( i  - -  r  dZ --  • T "  ( 6 . 2 3 )  
0 

As one can see from Eq. (6.23), the flow rate depends on the slope F via a~. 
the expression (6.9) for a~, we have 

G O 9p#3. f 
G~--'t--- ~ ,  Go=•  gtgr p~ 

A c c o r d i n g  t o  E q s .  ( 6 . 1 2 ) ,  ( 6 . 1 6 ) ,  a n d  ( 6 . 1 7 ) ,  we f i n d  

dZ _ ~ -- tp' 2-~ 

i __ ~ < l  

Substituting 

(6.24) 

(6.25) 

The integral (6.23) can be easily calculated with the help of the substitution (6.25). We 
now give the asymptotic expansion in the small parameter i/2a: 

I = 4/3 + I/2~ 2 + .... I/2~<<i. (6.26) 

In the approximation (6.26) the bottom layer of thickness 6 with constant concentration Csa t 
makes the main contribution to the sediment flow rate (I z 4/3). For Z ~ 6 the concentration 
of suspended sediment decreases rapidly according to the power law (6.20) and makes a rela- 
tively small contribution (~i/~2). 

For 0 < ~ - 1 ( 1 the following asymptotic expression can be derived: 

I~41n _-~, ~--i<<i, (6.27) 

In this case, which corresponds to high flow rate, the relative contribution of the suspended 
part of the sediment to the flow rate is much greater than the contribution of the bottom 
layer of thickness 6. 

6d. Takin Z into Account the Relative Velocity of the Particles. We now project the 
equation of balance of the forces acting on the dispersed phase per unit volume of the mix- 
ture onto a plane tangent to the bottom surface: 

F R +  F c + Fg = 0. ( 6 . 2 8 )  
r 

The first term is the resistance force of the particles in the liquid proportional to the 
squared relative velocity of the particles Vre I. It can be represented in the form 
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= c -z =:>" !~ R ~p /, /=--(Pp--P,w)gVp ]vre]~lvrel 
- w" ( 6 . 2 9 )  

= - 

w" tg qo " 

where V is the volume of an individual particle, c/Vp is the number of particles per unit 
volume,Pand f is the resistance force acting on an individual particle. For IVrel[ = lwl, 
evidently, f is the weight of the solid particle minus the buoyancy force. 

The second term is the Coulomb friction force. With the help of (4.4) we obtain 

~c J O~f = O ~ -  Ae. ( 6 . 3 0 )  

Finally, the projection of the force Fg, acting on a particle in the liquid as a result 
of the presence of the acceleration of gravity, can be represented as 

Fg = --AcF.  ( 6 . 3 1 )  

Substituting the expressions (6.29)-(6.31) into Eq. (6.28), we find the relative velocity of 
the particles in the liquid: 

2 
Vrel = ~v 2 tg ~ (t q- F), (6.32) 

and the vector Vre I is oriented opposite to the velocity v of the mixture. 

Taking into account the relative velocity (6.32), the particle flow rate will change by 
the amount 

oo 

AG = ppVo .f cdZ = @plVrelao~. ( 6 . 3 3 )  
O 

Thus we find with the help of Eqs. (6.23), (6.24), and (6.33) the following expression for 
the flow rate: 

G ' = C + A G = a  o 1 - - - ~ ,  l + r '  

(6.35) 
u,, = 7 1 ~rell 

where u, T is the dynamic velocity corresponding to the instant at which the particles come 
into contact. We note that the formulas (6.34) and (6.35) do not contain any unknown empiri- 
cal constants. The velocity Vp of the solid particles is oriented in the same direction as 
the velocity v(Z) of the mixture. For v < [Vrel[ the velocity of the particles is zero. 
Thus the particle velocity distribution over depth is determined as follows: 

Vp = v(Z) -~-Vrel,Z ~ No, Up = O, 0 ~ Z ~ Z o < ~ ( 6 . 3 6 )  

The level Z 0, separating the stationary layer of particles from the moving layer, is found 
from the relations 

Z 0 

Vrel= w t + = v ( Z  o) = ~Z" dZ. 
0 

With  t h e  h e l p  o f  Eqs .  ( 6 . 7 )  and ( 6 . 1 2 )  t h e  l a s t  i n t e g r a l  can  be  c a l c u l a t e d  i n  t h e  fo rm  

Z o 

V (Zo) = ~ ~ ( a  11[2 dZ = 2 ~ /tsar z~i/2 

0 

whence  ClsatZo/a~= (vo• t A c c o r d i n g  t o  E qs .  ( 6 . 3 2 )  and ( 6 . 3 5 ) ,  we o b t a i n  

c~atz o (I~,~ / ~ , , ~  ~ ~ a/~. = t 2 u . ]  = tg T-%-  (t ~- F). (6.37) 

The flow rate (6.33) must be calculated more accurately taking into account the distribution 
(6.36), in which for 0~Z~Z01 the solid particles are at rest. Using Eqs. (6.37) and (6.35), 
we estimate the error in the formula (6.33) as 

g 
i ~ u 2 z-'~ 2u, i[ Csat:Zo 1t3/2 N2V~el I" ( *T 1 

536 



7. Solution of the General Problem. From the diffusion equation (2.3), the equation 
of motion (3'3), and the rheological relation (4.1) we obtain, by analogy to the one-dimen- 

s i o n a l  c a s e ,  i n s t e a d  of  ( 6 . 5 )  
T -- R, R = T + A r ( a - - a ~ ) ,  r = v~ ctg T. 

Within the adopted assumptions F ~ i 

R = T + A F T ( a - - a ~ )  

(r T is the projection of the vector F on the vector T). 
(4.4) and Eq. (7.1) we find I 

B = % f + ~ w = A ( a ~ - -  a) + ~ w .  

Since ~w = 0 at Z = 0, it follows from Eqs. (7.2) and (7.3) that 

a~ = T/(A(t + FT)). 

By analogy to the one-dimensional problem, we write 

Repeating all arguments in Sec. 
two-dimensional case. 

Since the vectors T, R , and 

From Eq. (7.1) we find 

(7.1) 

(7.2) 
From the rheological relation (4.1)- 

(7.3) 

(7.4) 

TW= T--azo, xZ T2 = u.  \ ~ ]  . ( 7 . 5 )  

6c, we find that gqs. (6.10)-(6.16) are also valid for the 

OudOZ are collinear, it follows from Eq. 

0v u.  ( a ~1/2R 
oz  - - ~  ~ ~ ) -m" 

(7.5) that 

(7.6) 

l~ _ T (t + F~ ( 2 ,  - -  ,"))  - -  F ( 2 ,  -- , 3 ) .  
.R T (7.7) 

We determine the sediment flow rate, by analogy to the one-dimensional case, under the 
assumption that the particles move with the velocity of the mixture: 

oo oo 

2) Ov G =  ppS vcdZ = pipla~ ~ ( 2 , - -  , -5g dZ. ( 7 . 8 )  
0 

Substituting the expressions (7.6) and (7.7) 
for the flow rate: 

G = G o ( ( l -  r ~ ( t -  B)){---B-P), 

0 

into Eq. (7.8), we find the final expression 

i dZ 13= (i_,),3(2_~).2y, B=12/1. 
o ( 7 . 9 )  

The integral I is calculated in Sec. 6c. The integral 12 can be found similarly, and as a 
result we obtain the asymptotic formulas 

t8 t , 4 t B~-.2, 0 < ( ~ - - t ) < < t .  12=~+~-~3 B~T, a>>l, f 3=81n~_I, (7.10) 

The relative velocity of the particles can be taken into account similarly to the discussions 
in Sec. 6d. Thus we obtain 

= T - -  ( 7 . 1 1 . )  

u,~ = (x/O Pr t~  (l + r~12) w .  ( 7 . 1 2 )  

8. Comparison with Experiment. We now compare with experimental data the theoretical 
formulas for the contact velocity of the particles (7.12) and the sediment flow rate (7.11), 
substituting into them the known values of the parameters (,• 0.4, tan ~0.5). It follows 
from Eq. (7.12) that on an even bottom the ratio u.T/w~0.2. In [i0] it was established, on 
the basis of experimental data, that this ratio ranges from 0.18 to 0.25. 

As noted in [ii], one of the most reliable empirical formulas is [12] 
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where d is the diameter of the particles. Using for the setting velocity of the particles 
the formula w 2 = (s - l)gd [ii] and Eq. (7.12), Eq. (8.1) can be put into the form 

G =  (s--'l)"----'~*g 1 ~ u , / j  " 

The range of interest for practical applications is U..T/U~. < 0.9, where the flow rates calcu- 
lated from the formulas (8.1) and (6.34) differ by not more than 20% with F = O. 

The structure of the formulas (7.11) and (7.12) is identical to that obtained previously 
in [7] neglecting the diffusion of the particles. The values of the coefficients in the for- 
mula for the flow rate are close over the entire range of the parameter ~, except close to 
one. Therefore, the check of the formula in [7] for the case of erosion of the banks of a 
channel also pertains to the present work, and it can be concluded that the formulas for the 
sediment flow rate on an uneven bottom are in good agreement with experiment. 

Finally, the power law obtained for the concentration distribution (6.20) agrees with 
the known results of [ii, 13]. 
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